National Journal on Electronic Sciences and Systems, Vol. 2, No.1, April 2011 1

A MODIFIED DECOMPOSITION FILTER FOR REMOVAL OF IMAGE NOISES AND
ITS FPGA IMPLEMENTATION

Vasanth K', Karthik S?

1Sathyabama University, Chennai, Tamilnadu, India.
2Cognizant Technology solutions, Chennai, Tamilnadu, India
vasanthece_k @yahoo.co.in
2skarthick76@gmail.com

ABSTRACT

The paper gives a new scheme for the restoration of images corrupted by Gaussian noise, impulse noise, speckle
noise and mixed noise. The new algorithm works well on different noises and produce better image restoration
than existing standard median filter (SMF), Centre weighted median filter (CWF) and threshold decomposition filter
(TDF).The proposed algorithm (PA) is tested on different images corrupted by mixed noises and is found to produce
better results in terms of the qualitative and quantitative measures of the image for noise densities up to 30%
noise level for impulse noise, mean zero and 0.9% variance of Gaussian noise. The filter works well for speckle
noise up to 0.8% variance. The proposed algorithm is targeted on Xc3e5000-5fg900 FPGA using Xilinx 7.1 compiler
version which requires 3689 slices and a low power of 100mw and a optimum speed when compared to the other

median finding architectures.

Keywords: Rank order filter, threshold decomposition, Modified decomposition filter, field programmable gate array.

I. INTRODUCTION

Images are often degraded by noises due to
imperfections in image sensors or poor transmission
medium. The different types of degradations that occur
in images are additive random noise such as Gaussian
white noise and salt-and-pepper impulse noise,
signal-dependent noise such as speckle[4]. To restore
the degraded images, a correct filter should be used.
The characteristic of a good noise removal filter would
exactly remove the noise distributions, thereby the
original image is restored from the noisy image
completely. In order to facilitate this, the chosen filtering
algorithm must be stated to remove a particular noise
distribution. In real time, Even the noise removal filter
is designed to restore images well, there will be always
some degree of variation in the restored pixel values
from the original image. If the restoration of image
pixels is deviated in excess when compared to original
pixel then the restored pixel is not useful for
processing. In the above stated condition the restored
image might not be visually unacceptable if subjected
to human inspection [5]. Due to the poor photo
electronic detectors which results in thermal noise
which is additive zero mean Gaussian noise is induced
in the image [6]. A linear filter eliminates the Gaussian
noise effectively. Impulse noise is caused by defect in

pixels of camera sensors, fault in memory locations in
hardware, or transmission in a noisy channel. Two
common types of impulse noise are the salt-and-pepper
noise and the random-valued noise. For images
corrupted by salt-and pepper noise, the noisy pixels
can take only the peak and the valley values while in
the case of random-valued noise; they can take any
random value in the dynamic range[6]. Speckle is a
random, deterministic, interference pattern in an image
formed with coherent radiation of a medium containing
many sub-resolution scatterers. The local brightness of
the speckle pattern, however, does reflect the local
echogenicity of the underlying scatterers [5]. There are
two basic approaches to image de-noising, spatial
filtering methods and transform domain filtering
methods [7]. A conventional method to remove noise
from image data is to use a spatial filter. Spatial filters
broadly classified into non-linear and linear filters. Many
non-linear filters fall into the category of order statistic
neighbor operators [2]. This means that the local
neighbors are ordered in ascending order and this list
is processed to give an estimate of the underlying
image brightness. The simplest order statistic operator
is the median [6], where the central value in the
ordered list is used for the new value of the brightness.
The median is good at reducing impulse noise

2 National Journal on Electronic Sciences and Systems, Vol. 2, No.1, April 2011

However, A mean or average filter is the optimal linear
filter for Gaussian noise removal which tends to blur
sharp edges, destroy lines and other fine image details,
and perform poorly in the presence of signal-dependent
noise. This paper is organized as follows. Section ||
describes noise model. Section IIl gives a overview of
related work on Image De-noising using proposed
algorithm and its hardware implementation. Section IV
deals with Exhaustive Experimental Results and
Discussions and finally Concluding Remarks are given
in Section V.

Il. NOISE MODEL

Let the true image x belong to a proper function
space S(Q2) on Q=[0; 1]2, and the observed digital
image y be a vector in Rmxm indexed by
A=1,2,...mx1,2,...m. The image degradation can
be modeled as y= N (Hx), where H: S (Q) — Rmxm

is a linear operator representing blurring, and N: R
mxm Rmxm models the noise. Usually,

y=Hx+on where o ne Rmxm is an additive
zero-mean Gaussian noise with standard deviation
o >=0. outliers is modeled as impulse noise. [8].

¥y =Hx+og (1)

y=Ny) . 2)
where N represents the impulse noise. There are two
common models for impulse noise: the salt-and-pepper
noise and the random-valued noise. If [dmin; dmax]
denote the dynamic range of y/, i.e., dmin <y jj dmax
for all (ij), then they are denoted by Salt-and-pepper
noise: the gray level of y at pixel location (i j) is

" i B Ry
l% l } .I '.q.‘

Givenimage | —— > IGF';%USI:;; C— > |Noisyimage

L :‘,:I Modified
Denoised image Decomposition filter

Fig. 1. Insight of the proposed filter on mixed
noises

yij= dmin ; with probability p;
dmax ; with probaility q;
Yij; with probability 1 —p— g;

Where s=p+q denotes the salt-and-pepper
noise level [8].

ll. OVERVIEW OF PROPOSED ALGORITHM

The aim of the work is to remove the corrupted
image (mixed noises i.e., zero mean Gaussian and
impulse noise) using the proposed filter hardware.
Figure 1 gives the insight of the proposed work. To
overcome the problem in threshold decomposition
algorithm, a new bit level decomposition algorithm is
proposed. In the proposed scheme, the pixel intensity
is decomposed into its equivalent string of 1s by
keeping pixel intensities as threshold, thereby reducing
the complexities that are encountered in the existing
threshold decomposition method. The median is found
easily by eliminating the process of finding median
using the majority function which in turn eliminates the
need for large comparisons. Proposed algorithm is
given as follows:

Consider a given image of size MXN corrupted
by mixed noise. Pad the edges of the image by
150.The value used for padding is obtained from
extensive use of the value in more than 40 images of
different type and stature and found to have better
results. Hence the value is chosen to pad the edges
of our algorithm.

STEP 1: A 2D window of size 3 x 3 is selected from
the corrupted image to be processed. Assume the pixel
to be processed is p(x,).

STEP 2: Every pixel of the window is decomposed
into its number equivalent strings of 1’s considering the
pixel intensity itself as the threshold. Here the
decomposition is done with the help of a counter
ROW1, which eliminates the comparison involved in
decomposition process of the conventional and existing
threshold decomposition techniques. Simultaneously,
the number of 1’s in each column is counted with the
help of a counter and its number equivalent is stored
in COL1 simultaneously.

STEP 3: The values of COL1 counter are
decomposed into its equivalent strings of 1’s and the
number of 1’s at each column is recombined to obtain
the pixel intensities of the window sorted in descending

Vasanth et a/ : A Modified Decomposition Filter...

order with the help of counter VAL. The fifth element
of the VAL or the number equivalent of the fifth column
counter gives the median of the window considered.
After the computation of median, the centre pixel of the
window is replaced by the evaluated median.
Subsequently, the window moves towards the right for
a new set of window values; this processing as well
as the updating procedure are repeated until the end
of the image element is reached. Fig 2 denotes the
methodology of proposed algorithm [1]-[2].

WIND OW CONSIDERED

W o
~

N0
1w e
-]

N e w e R
WNsoeNw
@ o ~Nwme N
cHBHaqm
J‘-H@Ewmm
= [e][N][Mpe

(= B N, D= Iy

Y

DECOMPOSING INTO NUMBER
EQUIVALENT STRINGS OF 1'S BASED

DECOMPOSING COL1 VALUES
INTO EQIVALENT STRINGS OF1'S
THE NUMBER EQUIVALENT OF
THE 5™ COLUMN GIVES THE

MEDIAN ON PIXEL INTENSITY
coLl

987 7@ 432 14y 987654421
9 1 1 1 11 1 1 1 811111111

8 1 1 1 1|[1]1 1 1 41111

711 1 11 1 211

6 1 1 1 1@ 111

GAERENREY 1 PO a e
41111 511111

4111 10 71111111
2/111] 91 1 1.1 .1 1111
1.1 [l =

1

cdLL MEDIAN = 5 ROWI1

*WHERE ROW1. COL1 AND VAL ARE COUNTERS.

Fig. 2. Methodology of the proposed algorithm

A. Hardware implementation

The proposed algorithm works on two phase’s
decomposition and regrouping stage. Both these
phases involve counters to decompose and to regroup
the pixels. Hence a novel decomposition counter is
proposed in this paper as shown in figure 3. The
decomposition counter consists of a comparator,
multiplexer, 2D buffer array x (i)

X1array | Counter to Decompose & | Z1amay
— >

Count Number of Ones

Fig. 3. Entity of Decomposition counter

A column counter array of size 255 named Z1 is
initialized as zero. Initialize a 2D arrays named x1(i,
j) and x2(i, j) where i (row index) ranges from 0 to 8
and j (column index) ranges from 0 to 255. In
decomposition phase, decomposition is done by

3

comparing the pixel intensity with column counter
indices (j). If the index (j) value is greater than pixel
value then assign zero to array x1, if the column index
(j) is less than pixel intensity then assign one to array
x1. Hence pixel values are decomposed. The number
of 1s in each column is counted with the help of an
adder adding ones in the array x1 and its number
equivalent is stored z1 array which works as a counter
which is illustrated in figure 4.

Columncounter j 0123456789 254 285 "W

COLUMN
INDEX jej#1

| 1
') ¥
Tj10
bel il
i 0

o fYloe M —
O] O fe —

0
1
0
b
0

O fe] = || —
O i o ld o

1
I}
1
!
0

i iggh:
11808 / 2
— > i

{3,4‘?1‘3'7,5‘719} \1 11111111 1(0 olo] s
T 1T
+(ADDER)
T T
918/7(615 (4/42|1 |0 010

VA array&‘

Fig.4 lllustration of Decomposition counter after
decomposition phase

In recombination phase, the output array of first
phase is considered as input to the next stage. The
output of first array Z1 is decomposed into strings of
ones comparing the pixel intensity with row counter
indices (i). If the index (i) value is greater than pixel
value then assign zero to array x1, if the column index
(i) is less than pixel intensity then assign one to output
array x2. Hence pixel values are decomposed. The
number of 1s in each column is counted with the help
of an adder adding ones in the array Z1 and its number
equivalent is stored x2 array which works as a counter
which is illustrated in figure 5. The resultant array is
sorted in descending order. The process is repeated
for the remaining 8 pixel values. Fifth element of the
output array is the median [3].

4 National Journal on Electronic Sciences and Systems, Vol. 2, No.1, April 2011

Column counter i 0 12 3 4 5 67 8'“:”

0

ROW
INDEX i=i+1

_] =] —
-
-

-] A]
-

e = | -

—_ fe] a f] =

1
7
[
]
0

o [= [=

? >
e rels[o] o]

Z1 array

255

o

(=]

o

c...
R I

o

o

=]

(=]

CoLN IR

INDEX j=j¢+1
9 |87 |7]5/|4]|3]|21

Fig. 5S°'fﬂ‘t’fsr%)ﬁzon@Decomposition counter after
regrouping phase

IV. SIMULATION RESULTS

A. Proposed Algorithm Using MATLAB

This Section examines the performance of
proposed image denoising algorithm with existing
median filters, such as, standard median filter(inbuilt
MATLAB function (3x3)) SMF, Center weighted
median filter (CWF), Threshold decomposition filter
(TDF), for noises such as salt and pepper noise,
Speckle noise and zero mean Gaussian noise that are
added on images such as Lena, Barbara, Baby, girl,
Pepper and Cameraman image. It is proved
experimentally that the proposed algorithm works
optimally for better denoising of different noises. The
quality of the restored image is found by computing
Peak Signal to Noise Ratio (PSNR)Image
enhancement factor(IEF) and time using (matlab inbuilt
functions), which are the estimates of the quality of a
filtered image compared with an original image. The
PSNR is calculated using the formulae.

_ 255°
PSNR = 10Iog10(MSEJ
; (/’I]'_X/'/) 2
__
MSE = Mx N

where r - Original image, MxN - size of image x -
restored image. The Image enhancement factor is
calculated using the formulae

2
(? ”/f—f//)
i
IEF:\ /2

(X f/fJ
i

where n - corrupted image, r - original image, X -
restored image [1].

The Quality measure such as PSNR, IEF, and
CPU computation time in seconds for impulse noise,
zero mean Gaussian noise and speckle for impulse are
calculated for the PA and compared with SMF, CWF
and TDF, in Tables 1 to 3 for pepper.bmp. The
Proposed Algorithm uses a fixed 3X3 window for
processing for increasing noise densities and thus
leads to smaller computation time amongst the existing
threshold decomposition filters or stack filters and
centre weighted median filter. MATLAB 7.0(R14) on a
PC equipped with 2-GHz CPU and 1GB of RAM
memory has been employed for the evaluation of
computation time of all algorithms. It was found from
table1-3 that the proposed algorithm has better
performance in removing impulse noise up to
30%.From table 5 and 6 it was observed that the
proposed algorithm has capability to eliminate zero
mean with 0.9% variance Gaussian noise and speckle
noise up to 0.8% variance. Considering the discussions
made before, Subsequent Tables 4 to 6 represents the
performance of the SMF, CWF, TDF and PA for five
different images by above said compositions of noises
respectively. Table 7 and 8 shows the performance of
the PA is better in terms of PSNR, IEF and optimum
time when compared with SMF, CWF, and TDF for
various types of images corrupted by all three types of
noises in proportion. Fig 6-14 illustrates the
performance of the PA over other filters for impulse
noise, Gaussian noise and speckle noise. In fig 15-16
PA has higher PSNR, |IEF when tested on different
images which is corrupted by 30% impulse noise. In
fig 18, 19 PA has slightly better PSNR, IEF over other
filters that are used for denoising zero mean variance
0.9% variance Gaussian noise tested on various
images. It was observed that for the images which
have gray levels varying more (details of an image)
such as cameraman.bmp, barbera.tif, girl.jpg the PA
performance is average when compared with other
filters. For the images whose gray levels is uniform
(details of the image) such as baby.jpg, pepper.omp
the performance of the PA is good when compared
with other filters. In fig 21 the PSNR performance of

Vasanth et a/ : A Modified Decomposition Filter...

the PA is in par with other filters for 0.8% variance
speckle noise. From fig 22 we understand such that
depending upon the variation in grey levels in an image
the performance is good or average. IEF of the PA
good on par with other filters if the grey level changes
are more else the performance is average. Fig 24-25
gives the performance of PA over different images
corrupted by mixed noises in some proportion has a
good PSNR and IEF. Fig 50-53 shows pictorial
representation obtained by employing various filters. Fig
8, 11, 14, 17, 20, 23, 26 denotes the optimum
computational speed at which the PA works[2].

. PSNR VS IMPULSE NOISE DENSITIES FOR VARIOUS
¥ 9 "~ ALGORITHMS (PEPPERS.BMP(512X512))

w
=1

n
)

——SMF

—a—TDF

N
S

—o—CWF

PSNRin db

o

—&—PA

=4

10% 20% 30% 40% 50% 60% 0% B0% 90%
NOISE DENSITIES

Fig. 6. Noise density versus PSNR for various
filters for pepper image corrupted by impulse noise

IEF V§ IMPULSE NOISE DENSITIES FOR VARIOUS
ALGORITHMS

\ ——SMF

30
\ —=—TOF

20
W —o—CwF

10

. M ——PA
1] T T T T T T

0% 20% 30% 40% 50% . 60% 70% 80% 90%
NOISE DENSITIES

Fig. 7. Noise density versus |EF for various filters
for pepper image corrupted by impulse noise

IEF

COMPUTATION TIME VS IMPULSE NOISE DENSITIES FOR

600 VARIOUS ALGORITHMS
—
m o — T -.—___._
ESUJ .__-__*_ pr——
= :
400
= "
o
=300
-
<
B
o
gms
hA—A—h A —h A —h—A—A
o
L9 @ @ ¢ ¢ ¢ 9 |

0% 20% 30% 40% 50% 60% 0% e0% 90%
NOISE DENSITIES

Fig. 8. Noise density versus TIME for various
filters for pepper image corrupted by impulse noise

PSNRVS ZERO MEAN GAUSSIAN NOISE DENSITIES FOR

u VARIOUS ALGORITHMS
E 32 LS
=
= 30 =
(14 . ‘t::*:_\-
% 28 o — = 7?::‘*_7_
S
24 . —~
—~——_
2 —
20 e

0.001 0002 0.003 0004 0.005 0006 0.007 0.008 0.009
VARIANCE

Fig. 9. Variance versus PSNR for various filters for
pepper image corrupted by Gaussian noise

IEFVS ZEROMEAN GAUSSIAN NOISE DENSITIES FOR

VARIOUS ALGORITHMS
45 g
EreT—
e — ':_':_:j.———.—
s — :‘—4" —
3 - ——SMF
25 s
o | —a—TDF
R 3 A
15 ——
; - g . s ——CWF
05 gt
—A—PA
0

0001 0002 0.003 0004 0005 0006 0007 0008 0009
VARIANCE

Fig. 10. Variance versus IEF for various filters for
pepper image corrupted by Gaussian noise

COMPUTATION TIME VS ZERO MEAN GAUSSIAN NOISE

>
2

DENSITIES FOR VARIOUS ALGORITHMS

140
w — - &
B |y i
=
ZWUO —+—SMF
9 80
=N N
=
2 40 ——CWF
= 09— —— -
8 bdl *— @ ——PA

e e e e it

0.001 0.002 ‘ 0.003 0004 0005 0006 I 0.007 I 0.008 ‘ 0.009 ‘
VARIANCE

Fig. 11. Variance versus TIME for various filters for

pepper image corrupted by Gaussian noise

PSNRVS SPECKLE NOISE DENSITIES FOR VARIOUS

7 ALGORITHMS "
kC Y 4
33 S — 7
32 — = 7/
o e,
EL —+—SMF
(=] ‘i—-_.__‘
=2
=5 —=—TOF
"9
UZ_) 28 A—gb.——ﬁf_ — = .
— — — —8—C\
@ . ——@— . 3 CWF
N ——PA
25

0.001 0002 0003 0004 0005 0006 0007 0008 0009

VARIANCE

Fig. 12. Variance versus PSNR for various filters
for pepper image corrupted by Speckle noise

National Journal on Electronic Sciences and Systems, Vol. 2, No.1, April 2011

IEFVS SPECKLE NOISE DENSITIES FOR VARIOUS
254 ALGORITHMS

——SMF

/};/{/ \ —=—TOF

[TES |
4 i
——CWF
05
9
® —&—PA

0001 0.002 0003 0004 0005 0006 0007 0.008 0009
VARIANCE
Fig. 13. Variance versus IEF for various filters for
pepper image corrupted by Speckle noise

COMPUTATION TIME VS SPECKLE NOISE DENSITIES FOR
180 1 VARIOUS ALGORITHMS

160
w
=140

TIME VS TYPES OF IMAGES

baby.jpg caman.bmp barbara tif pepperbmp girl.jpg
TYPES OF IMAGES

Fig. 17. TIME for various filters applied over
different images corrupted by 30% impulse noise

120
4 ——SMF

= 90

< Ak —A—hk—Ah—hk—h—k—A
L e—e O o o o 0 @ ©

—a—TDF

—8—CWF

o 21 —A—PA

0001 0002 0003 0004 0005 0006 0007 0008 0.009
VARIANCE

Fig. 14. Variance versus TIME for various filters for
pepper image corrupted by Speckle noise

PSNR AT 30% IMPULSE NOISE VS TYPES OF NOISES

- o W
o o @ o

PSNR at 30% impulse noise
=

o o

baby.jpg caman.bmp barbara.tif pepper.bmp girl.jpg
TYPES OF IMAGES

Fig. 15. PSNR for various filters applied over
different images corrupted by 30% impulse noise

IEF FOR 30% IMPULSE NOISE VS TYPES OF NOISES

BSMF
aTOF

OCWF
BPA

IEF for 30% impulse noise
o

=}

baby.jpg caman bmp barbara tif pepper.bmp airl jpg
Types ofimages

Fig. 16. IEF for various filters applied over different
images corrupted by 30% impulse noise

:5 -

0
g . _
i & mSMWF

s aTF
g 5 15 el
PA
p>10 =
E 5
0 T :
baby.jpg caman bmp barbaratif pepperbmp grl.jpg
TYPES OF IMAGES

Fig. 18. PSNR for various filters applied over
different images corrupted by zero mean and 0.9%
variance Gaussian noise

s, IEFFOR ZERO MEAN AND VARIANCE 0.9% VS TYPES
OF IMAGES

IEF FOR ZERO MEAN AND
VARIANCE 0.9%

baby.jpg camanbmp barbaratif pepperbmp girl.jpg
TYPES OF IMAGES

Fig. 19. IEF for various filters applied over different

images corrupted by zero mean and 0.9% variance
Gaussian noise

700 TIME VS TYPES OF IMAGES

asMF
mTOF

OCWF
mPA

TIMEIN SEC
oW &
=]
=)

baby.jpa caman.bmp barbara.tif pepper.bmp airljpg
TYPES OF IMAGES

Fig. 20. TIME for various filters applied over
different images corrupted by zero mean and 0.9%
variance Gaussian noise

Vasanth et a/ : A Modified Decomposition Filter...

PSNR FOR VARIANCE 0.8 VS TYPES OF IMAGES

@ W
(=]

)
a

BSMF
eTOF
OCWF
BPA

= oo
e o o

PSNR FOR VARIANCE 0.8%
o o

baby jpg caman.bmp barbara tif pepper.bmp girl jpg
TYPES OF IMAGES

Fig. 21. PSNR for various filters applied over different
images corrupted by 0.8% variance Speckle noise

35, |EFFOR 0.8% VARIANCE VS TYPES OF IMAGES

=
(LI I)

ﬂmdﬁﬂ

baby.jpg caman.bmp barbara tif pepper.bmp girl jpg
TYPES OF IMAGES

IEF For 0.8% variance

Y-

0.

(=]

Fig. 22. IEF for various filters applied over different
images corrupted by 0.8% variance Speckle noise

180 TIMEVS TYPES OF IMAGES

180

140
o 120 BSMF
& 100 aTDF
=
w &0 OCWF
=
F 60 mPA

40

20

(1]
baby.jpg caman.bmp barbara.tif pepper.bmp girl.jpg

TYPES OF IMAGES

Fig. 23. TIME for various filters applied over different
images corrupted by 0.8% variance Speckle noise

30 - PSNR FOR MIXED NOISES VS TYPES OF IMAGES

OCWF
BTOF

PSHR FOR MIXED NOISES

lena.gif girljpg babyjpg barbaratif pepperbmp caman.bmp
TYPES OF IMAGES

Fig. 24. PSNR for various filters applied over
different images corrupted by 20% impulse noise,

0.9%yvariance Gaussian noise

[asmE |

[21

25 . |EF FOR MIXED NOISES VS TYPES OF IMAGES

I
=3

BSMF
acWwF
mTDF
mPA

[T

=)

IEF FOR MIXED NOISES

5}

o

lena.gif girl.jpg baby jpg barbaratif pepperbmp caman.bmp
TYPES OF IMAGES

Fig. 25. IEF for various filters applied over different
images corrupted by 20% impulse noise,
0.9%variance Gaussian noise

450 TIME VS TYPES OF IMAGES

400

350
Q 300 BSMF
@ 250 oCWF
m 200 BTOF
=
= 150 mPA

100

50

0
lena.gif girljpg baby.jpg barbaratif pepper.bmp caman.bmp

TYPES OF IMAGES

Fig. 26. TIME for various filters applied over
different images corrupted by 20% impulse
noise,0.9%variance Gaussian noise

B. Proposed Algorithm for FPGA

The proposed algorithm was targeted on Spartan
3e family XC3S5000-5fg900 FPGA. The code was
developed using VHDL. The simulator tools used was
a third party tool Modelsim 5.8i and synthesis tool XST
was used as part of Xilinx 7.1i suit for CPLD & FPGA
development. Table 9 gives the device utilization
summary, timing specification and power report for the
target FPGA for various median finding algorithms such
as bubble sort, heap sort, insertion sort, Selection sort,
Threshold decomposition Filter [3].

m:hmernon_sor:f‘c @ 79 ps

Fig. 27 Simulation result of Insertion sorting

PIRRR AR

PP

National Journal on Electronic Sciences and Systems, Vol. 2, No.1, April 2011

P
i
i
&
i
A
i
i
i
i
P
F

Fig. 32 Simulation result of PA

7 Jolction. solld
1 fuelecton_sot/e
7 | scton. sol
| achon, ol
" lselecton_soth
7' ilacion solh

I /selechon_sor/answe

Fig. 33 Floor plan of Bubble Sorting

Fig. 34 Floor plan of Heap Sorting

Fﬁe':u];&. : [——

Fig. 31 Simulation result of TDF Fig. 35 Floor plan of insertion Sorting

Vasanth et a/ : A Modified Decomposition Filter...

iH iﬁl y

I

Fig. 36 Floor plan of Selection Sorting

b

Fig. 37 Floor plan of TDF Fig. 41

43 Routed FPGA of TDF

Fig. 39 Routed FPGA of Bubble Sorting Fig.

10 National Journal on Electronic Sciences and Systems, Vol. 2, No.1, April 2011
Fig. 44 Routed FPGA of TDF
Table 1 PSNR,IEF,TIME for PEPPER.BMP (512 x 512) IMAGE CORRUPTED BY IMPULSE NOISE AT
DIFFERENT NOISE DENSITIES
PSNR IEF TIME
ND SMF TDF CWF PA SMF TDF CWF PA SMF TDF CWF PA

10% 15.316 28.062 32.483 32.763 1.452 18.237 52.712 56.325 1.694 363.787 17.384 62.711

20% 12.324 26.279 27.267 29.112 1.891 17.049 31.779 49.28 1.759 439.819 15.085 63.22

30% 10.588 22.864 21.651 23.667 222 13.634 13.133 20.539 1.777 461.69 14.136 63.651

40% 9.341 18.741 17.456 18.789 2.363 7.978 6.659 9.039 1.777 470.404 14.286 63.933

50% 8.313 15.085 14.159 15.171 2.223 4.609 3.872 4.868 1.732 479.944 14.231 64.024

60% 7.446 12.181 11.6 12.224 1.936 2.871 2.56 2.967 1.777 505.359 14.258 64.127

70% 6.651 9.892 9.422 9.931 1.622 1.993 1.818 2.032 1.758 509.625 13.638 64.422

80% 5.867 8.024 7.762 8.013 1.348 1.493 1.413 1.494 1.722 524.815 15.723 64.574

90% 5.147 6.499 6.392 6.531 1.143 1.184 1.159 1.193 1.707 532.148 14.126 64.865

Table 2 PSNR,IEF,TIME for PEPPER.BMP (512 x 512) IMAGE CORRUPTED BY ZERO MEAN GAUSSIAN
NOISE AT DIFFERENT NOISE DENSITIES

VAR SMF TDF CWF PA SMF TDF CWF PA SMF TDF CWF PA

0.001 29.049 28.022 33.052 32.771 1.012 0.343 2.016 1.901 1.646 118.857 18.336 61.927

0.002 26.62 27.669 31.452 31.461 1.027 0.649 2.786 2.805 1.694 124.801 14.567 61.287

0.003 25.052 27.291 30.305 30.359 1.042 0.934 3171 3.243 1.656 124.899 15.203 61.864

0.004 23.967 26.981 29.423 29.651 1.057 1.188 3.448 3.653 1.68 128.467 15.593 61.816
0.005 23.075 26.644 28.685 28.988 1.072 1.417 3.635 3.886 1.7 129.563 14.657 61.807
0.006 22.315 26.365 28.098 28.429 1.085 1.616 3.764 4113 1.645 133.651 14.879 61.699
0.007 21.7 26.009 27.557 27.924 1.099 1.81 3.897 4.246 1.683 136.235 14.965 61.856

0.008 21.135 25.79%4 27.052 27.507 1.114 1.993 3.964 4.393 1.678 135.62 13.964 61.649

0.009 20.657 25.566 26.669 27.065 1.128 2.148 4.043 4.472 1.656 136.334 14.281 62.035

Table 3 PSNR,IEF,TIME for PEPPER.BMP (512 x 512) IMAGE CORRUPTED BY SPECKLE NOISE AT
DIFFERENT NOISE DENSITIES

PSNR IEF TIME +

VAR SMF TDF CWF PA SMF TDF CWF PA SMF TDF CWF PA

0.001 34.183 34.833 28.294 34.054 0.704 0.818 0.094 0.679 1.812 148 26.344 70.485

0.002 33.402 33.835 28.151 33.326 1.171 1.296 0.186 1.145 1.562 150.438 25.985 69.594

0.003 32.763 33.021 28.021 32.633 1.517 1.608 0.273 1.479 1.594 151.157 29.235 70.11

0.004 32.19 32.352 27.884 32.139 1.766 1.827 0.358 1.747 1.563 159.343 23.328 70.719

0.005 31.655 31.738 27.735 31.635 1.963 1.988 0.439 1.948 1.563 154.937 22.969 69.547

0.006 31.235 31.199 27.544 31.164 213 2.114 0.516 2.097 1.578 159.734 24.625 70.578

0.007 30.787 30.769 27.411 30.781 2.244 2.23 0.592 2.236 1.859 164.343 24.797 69.797

0.008 30.407 30.342 27.271 30.396 2.345 2.316 0.664 2.341 1.593 164.657 24.719 70.515

0.009 34.183 34.833 28.294 34.054 0.704 0.818 0.004 0.679 1.812 148 26.344 70.485

Vasanth et al :

A Modified Decomposition Filter...

11

Table 4 PSNR,IEF,TIME for DIFFERENT IMAGES CORRUPTED BY IMPULSE NOISE AT 30% NOISE DENSITY

IMAGES PSNR IEF TIME
SMF | TDF [CWF [PA | SWF | TDF | CWF | PA | SMF | TDF | CWF | PA
BABY.JPG (292 x 425) 22172 | 23.076 | 21591 | 23.973 [16.694 | 23.199 | 14.524 | 24.995 | 1.335 | 98.674 | 11.75 | 24.736
CAMERAMAN.BMP (256 x 256) 20698 | 19.826 | 20.352 | 21.418 [11.022 | 8.875 | 10.135 | 12.821 | 0.995 |116.883| 7.178 | 11.66
BARBERA.TIF (512 x 512) 21038 | 21.327 | 20.041 | 21.147 [10917 [10.075 | 8722 | 11289 | 1.38 |457.713| 1424 | 62.22
PEPPER.BMP (512 % 512) 10.588 | 22.864 | 21.651 | 23.667 | 222 | 13.634 | 13.133 | 20539 | 1.777 | 461.69 | 14.136 | 63.651
GIRL.JPG (600 x 900) 10.232 | 2365 | 21.753 | 23613 | 11.907 | 17.817 | 21.753 | 23614 | 1.918 | 87.308 | 21.753 | 23.65
Table 5 PSNR,IEF,TIME for DIFFERENT IMAGES CORRUPTED BY ZERO MEAN GAUSSIAN NOISE FOR
VARIANCE 0. 9
IMAGES PSNR IEF TIME
SMF | TDF | CWF | PA | SMF [TDF | CWF | PA [SMF | TDF | CWF [PA
BABY.JPG (292 x 425) 27744 | 27821 | 27.34 | 27917 | 4952 | 3964 | 4489 | 5111 [1354 | 91.194 | 19.62 [27.116
CAMERAMAN.BMP (256 x 256) 24361 | 21.778 | 25651 | 24427 | 2246 | 1266 | 215 | 2292 [0017 | 82554 | 25.199 [11.245
BARBERA.TIF (512 x 512) 23246 | 4642 | 23316 | 23287 | 1.875 | 0988 | 1.892 | 1.892 [1472 |614.141 | 14045 | 60.599
PEPPER.BMP (512 % 512) 20657 | 25566 | 26.669 | 27.085 | 1.128 | 2148 | 4043 | 4472 | 1656 |136.334 | 14.281 | 62.085
GIRLJPG (600 x 900) 20839 | 26.973 | 32.285 | 27.366 | 2.116 | 2778 | 1.939 | 4584 | 1.782 |211.644 | 69.512 | 79.246

Table 6 PSNR,IEF,TIME for DIFFERENT IMAGES CORRUPTED BY SPECKLE NOISE FOR VARIANCE 0.8%

IMAGES PSNR IEF TIME
SMF TDF CWF PA SMF TDF CWF PA SMF TDF CWF PA
BABY.JPG (292 x 425) 28.53 | 28.446 | 28.153 | 28.623 | 2.784 | 2504 | 3.007 | 3.021 1.346 | 88.697 | 8813 | 25.755
CAMERAMAN.BMP (256 x 256) | 25.934 | 22.345 | 26.308 | 26.979 | 0.864 0.4 0.943 | 0874 | 0.969 [40.015 1.5 17.61
BARBERA.TIF (512 x 512) 24.523 | 24.969 | 24.842 | 24.563 | 0.52 0.42 0.558 | 0.522 1.157 | 166.657 | 23.062 | 69.656
PEPPER.BMP (512 x 512) 30407 | 27.271 | 30.342 | 30.396 | 2.345 | 0.664 | 2316 | 2.341 1.593 | 164.657 | 24.719 | 70.515
GIRL.JPG (600 x 900) 29.147 | 31.125 [32.607 | 32.689 | 1.082 1.859 [0.153 1.893 | 2.095 |[166.673 | 24.453 | 78.261

Table 7 PSNR, IEF, TIME for LENA.GIF, GIRL.JPG, and BABY.JPG IMAGES CORRUPTED BY 20% IMPULSE

NOISE PLUS ZERO MEAN 0.9% VARIANCE GAUSSIAN NOISE

LENA.GIF (512 x512) GIRL.JPG (600 x 900) BABY.JPG (292 x 425)
PSNR IEF TIME PSNR IEF TIME PSNR IEF TIME
SMF 24.599 16.596 4.14 12.14 9.238 5.056 24.145 17.386 3.699
CWF 22.631 10.569 39.798 22.51 11.413 60.134 22.676 12.6072 21.484
TDF 23.946 14.854 242.255 24.42 13.971 419.09 24.92 18.48 211.781
PA 24.704 17.015 113.295 24.643 18.591 183.885 25.074 20.999 66.235

Table 8 PSNR, IEF, TIME for BARBARA.TIF,PEPPER.BMP, CAMERAMAN.BMP IMAGES CORRUPTED BY 20%
IMPULSE NOISE PLUS ZERO MEAN 0.9% VARIANCE GAUSSIAN NOISE

BARBARA.TIF (512 x 512) PEPPER. BMP (512x512) CAMERAMAN.BMP (256 x 256)
PSNR IEF TIME PSNR IEF TIME PSNR IEF TIME
SMF 21.593 8.399 3.378 12.515 1.812 3.378 22.023 9.693 4.169
CWF 21.134 7.509 29.632 22.289 10.213 29.632 21.514 8.754 36.738
TDF 21.962 7.547 286.573 23.46 10.437 286.573 22.173 7.005 311.423
PA 21.987 8.565 150.454 24.244 16.011 150.454 22.274 10.59 155.469

Fig. 47. Comparison of slices utilized Vs Various
algorithms

12 National Journal on Electronic Sciences and Systems, Vol. 2, No.1, April 2011
Table 9 Comparison of various median finding algorithms for XC3s5000-5FG900
No. | Parameters [IoF PA°~ | Bubble | Heap | Selection [Insertion
Device Utilization Factor After Synthesis
1 Slices 4132 4021 4375 3810 4552 3399
2 |4ipLUT 7066 6854 6080 5312 6368 5340
3 Bonded 10B 82 82 321 321 321 321
4 Gelk 2 1 1 1 1 1
Device Utilization Fator After place & Route
1 Externai IOBs 82 82 321 321 321 321
2 Slices 3800 3687 3088 2783 3280 2810
Timing Specifications before Place & Route
1 Minimum Input arrival before the clock ns 4,05 169.13 158.88 334.72 417.41 223.69
2 | Maximum output required time after clock ns 6.21 6.21 7.165 7.165 7.165 7.165
Power consumption
1 | Power(mw) S 10 [28 | 28 | 208 [298
Compaison of SNces s various MINIMUM INPUT ARRIVAL TIME VS
o algorithms BEFORE PLACE & ROUTE)
& 5000 w VARIOUS ALGORITHMS
S 4000 g 450
@ 3000 @
3 2000 = 4%
G 1000 E = 350 -
2 E & 300 -
<
E & XX »® R LS d 250
s © A a Y
N = ¥ 200
various algorithms S : 150
. . . - . e 100
Fig. 45. Comparison of Slices utilized Vs Various g 2 <o
algorithms = @ o
Comparison of 4 1/P LUT's vs various s & & AN
Algorithms = Q ¥ \)Q,Q’ Q\‘(Y ‘o(’ \b‘&
-
5 8000 VARIOUS ALGORITHM
= 6000
:- o
8 4000 Fig. 48. Comparison of minimum input arrival Time
= 2000 . .
€5 Vs Various Algorithms
o
s
o QQ & R \0(\ \o(‘
= s & =F aeé} & & MAXIMUM OUTPUT REQUIRED TIME
AN
yarious algorithms " AFTER CLOCK VS VARIOUS
SY 74 ALGORITHMS
Fig. 46. Comparison of 4 i/p LUT’s utilized Vs E 72
Various algorithms ox 7
& O s
Comparison of Slices vs various 8 g =6.6
i 96.4
T 4000 algorithms (AFTER PLACE & ROUTE) s o Qe
§3000 2" ~6
5 23 5o
2000 <2 56
gl 00 = ORI S
- A QD% \z&v .4\\0 /\\0
@) < x
-E £ (Q‘o éc;o
) A\
2 F ¥ RS
= s »E \;\ %6‘ VARIOUS ALGORITHMS
various algorithm§&® ¢

Fig. 49. Comparison of maximum output required

Time after clock Vs Various Algorithms

Vasanth et a/ : A Modified Decomposition Filter... 13

Fig. 50. Baby.jpg, pepper.omp, girl.jpg (a) original image (b) impulse noise affected from by 30% (c) images
restored by SMF (d) images restored from by TDF (e) images restored by CWF (f) images restored by
proposed algorithm

Fig. 51. Baby.jpg, pepper.omp, girl.jpg (a) original image (b) Zero mean and 0.9% variance Gaussian noise
(c) images restored by SMF (d) images restored from by TDF (e) images restored by CWF (f) images restored
by proposed algorithm

14 National Journal on Electronic Sciences and Systems, Vol. 2, No.1, April 2011

N e g . .o W o s =
- ¥ - :‘ S ol " - - ;.
-

(b)
Fig. 52. Baby.jpg, pepper.omp, girl.jpg (a) original image (b) 0.8% variance Speckle noise (c) images restored
by SMF (d) images restored from by TDF (e) images restored by CWF (f) images restored by proposed
algorithm

-~ e ———
,z ”l‘, \;‘

T 2 VI P

“

(@) (b) () (d) (e) ()
Fig. 53. Barbara.tif, pepper.omp, lena.gif, Cameraman.bmp, baby.jpg, girl.jpg (a) original image (b) Impulse
noise 20% plus zero mean 0.9% variance Gaussian noise (c) images restored by SMF (d) images restored from
by CWF (e) images restored by TDF (f) images restored by proposed algorithm

Vasanth et a/ : A Modified Decomposition Filter...

Comparison of Power vs various
algorithms
350

300
250
200
150
100
h
0
\Q(‘ ¥ g RS é)o°

) &
0 RS
.~ i z\zb
of

power (mw)

o

{5y
«

various algorithms

Fig. 54. Comparison of power Vs Various Algorithms

Figure 27-32 illustrates the simulation output of
the existing median finding algorithm and proposed
algorithm. Figure 33-38 eludes the floor plan for the
existing algorithm and proposed algorithm. Figure 39-44
gives the routing of the logic with the pins for various
existing median finding algorithm and proposed
algorithm. Figure 45-49 and 54 gives the number of
logic utilized before and after place and route, number
of 4 input look up table utilized, Minimum input arrival
time required before the clock and maximum output
time required after the clock for various existing median
filtering algorithm and proposed algorithm.

IV. CONCLUSION

The proposed algorithm and the existing median
filters had been tested for different noise types for
different images. It was assumed to keep a fixed 3x3
window for increasing noise densities for the proposed
algorithm. From the extensive experiments, we
conclude that, the highest PSNR (dB) and IEF is not
obtained for PA for different images and for different
noise type at higher noise densities. However, on an
average sense, PA gives good performance for low
density impulse noise up to 20%, zero mean 0.9%
variance Gaussian noise removal. When compared to
their class of decomposition filters such as TDF in
specific, the PA exhibits better performance for Salt &
Pepper noise removal up to 30% and reduces smaller
proportion of zero mean 0.9% variance Gaussian noise.
The proposed filter also exhibits good noise removal
up to 0.8% speckle noise. In our method, time
complexity of the existing methods is eliminated by
using the pixel intensity itself as threshold. Hence, the
proposed method shows optimum performance with
fewer comparison complexities. The Proposed algorithm
has good average computation time such that it's twice
faster in comparison to TDF and exhibits optimum

15

computation speed when compared with other filters.
FPGA implementation part is concerned the simulation
of each of the median finding algorithm along with the
proposed algorithm is given in figure 27-32 The
Proposed algorithm uses comparators, buffers, adders
in comparison with large amount of complex
comparators and adders used in existing bit level
architecture such as TDF. It is evident visually that the
Floor plan and routed FPGA that area occupied by
MDF algorithm is optimum when compared with
existing median finding algorithm. Table 9 gives the
device utilization summary, timing and power
specification for the target device XC3S5000-5fg900
required by the proposed algorithm in par with the
existing median finding algorithm. Row 1 of the table
9 illustrates the slices required by the proposed logic
after the synthesis. The proposed algorithm requires
optimum number of slices when compared to the byte
level median finding algorithms. But when compared
with its class of bit level architecture it requires less
number of slices. The second row of the table 9
denotes the number of 4 input look up table required
by the proposed algorithm along with the existing
algorithm. The proposed algorithm require optimum
number of 4 input look up table when compared to
existing bit level and byte level architectures which are
discussed in this paper. The proposed logic requires
less number of bonded IOB®. It was found both the
bit level architecture require 89 bonded IOB’s when
compared to the other byte level architectures
implemented and compared in this paper. The second
half of the table deals with the device utilization of all
the median finding algorithms after place and route.
Once again it clear that the proposed logic requires
optimum number of slices when compared with byte
level algorithms such as bubble, insertion, selection,
heap. It was found that the number of slices required
is less when compared to the bit level architecture of
TDF. The third part of the table deals with the minimum
and maximum input and output required time before
and after clock. It was found that the proposed logic
requires optimum input and output arrival time. The last
part of the table deals with power required by each
median finding algorithm on the FPGA. It was found
that the proposed logic requires very less power. It was
also evident from the bar graphs in figure 45-49, 54
that the proposed logic requires optimum number of
slices and optimum input and output arrival times when
compared with byte level median finding algorithms and

16

National Journal on Electronic Sciences and Systems, Vol. 2, No.1, April 2011

less number of slices when compared with the existing
algorithm. The proposed logic requires low power when
compared with the existing median finding algorithm.
The proposed algorithm exhibits very good results in
restoration of images corrupted by non identical noise
and an optimum area reduced, low power architecture
is proposed for modified decomposition algorithm.

REFERENCES

[1]

[2]

3]

K.Vasanth,S.Karthik,"A New class of decomposition
algorithm for the reduction of low density impulse
noise”, international conference on ARTCOM2009,
kerala, India pages 203-207

K.\Vasanth, S.Karthik., “Performance Analysis of
modified decomposition filter for non identical noises”,
ICTACT international journal on Image and video
processing, 2010, Vol1, issue2, pages 105-115.

K.\Vasanth, S.Karthik., “FPGA implementation of
modified decomposition filter’, international conference

[4]

[5]

[6]

[7]

[8]

on Signal and image processing, RMD Engg college,
Tamilnadu, India,2010

N. D. Sidiropoulos, J. S. Baras & C A Berenstein,
1994,"Optimal filtering of digital binary images
corrupted by union/intersection noise", IEEE Trans. on
Image Processing, Vol.3, No.4, July 1994, pp.382-403.

G.R.Arce, N.C.Gallagher, and T.Nodes, 1986, “Median
filters: Theory and applications,” in Advances in
Computer Vision and Image Processing, T.Huang,
Ed.Greenwich, CT: JAI

I. Pitas and A.N.Venestanopoulos, “Nonlinear digital
filters Principles and applications”, (Boston: kluwer
academic Publishers, 1990).

Motwani M.C, Gadiya M.C, Motwani R.C. and Harris
Jr. F.C., 2004, “Survey of Image Denoising
Techniques”, Proceedings of GSPx, Santa Clara, CA.

A. Bovik, 2000, Handbook of Image and Video
Processing, Academic Press, 2000.

